Researchers have identified a mechanism by which an oncogene commonly activated in cancer patients affects the growth rate of cells. In the future, the findings can help in developing new treatments that could prevent cancer genes from inducing tumor growth.
Researchers focusing on the effects of the MYC oncogene have revealed new information about the factors that regulate the growth of cancer cells. MYC promotes the expression of genes that are important for cellular growth, and it is known to be overactive in more than half of all human cancers. However, there are no drugs currently available for inhibiting MYC function because its protein structure is not well suited for therapeutic targeting.
Alternative option for preventing MYC activity would be to inhibit the function of the MYC target genes. In their recent study, the researchers of University of Helsinki belonging to Academy of Finland’s Center of Excellence in Tumor Genetics Research have identified target genes of MYC that are responsible for its growth promoting effects.
– In a healthy tissue, cell growth and proliferation are tightly controlled processes. During development of cancer, cells escape these control mechanisms and grow uncontrollably, explains senior researcher Päivi Pihlajamaa.
The researchers identified genomic binding sites of the MYC oncogene at the regulatory regions of its target genes and showed that removing these binding sites from DNA slowed down cell growth. The findings have recently been published in Nature Biotechnology.
– Our results show that very small changes to cellular DNA, such as modification of a single gene regulatory element, can have a significant effect on the proliferation rate of the cells, confirms Pihlajamaa.